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An I.B.M. 704 electronic computer was used to integrate the differential 
equations, which determine the shock singularity, when the velocity after the 
shock on a body is subsonic. The results are given in  twenty-two cases cor- 
responding to three different bodies; the procedure followed was outlined in a 
previous paper (Cabannes 1952). 

1. Introduction 
We consider a body of revolution placed in a compressible fluid; the viscosity 

and thermal conductivity are neglected. The fluid is moving at infinity with a 
uniform supersonic velocity ?j parallel to the axis of revolution Ox. A shock wave 
is formed in front of the obstacle; it  limits the region in which the flow is uniform. 
We assume that the nose of the body is a cone of revolution with semi-angle at 
the apex O,, and that the angle 8, has been chosen such that a shock wave could 
be attached at the point 0 of the body. For small values of Mach number, 
M < Mo(Os), the shock wave is detached; for large values of Mach number, 
M 2 M**(O,), the flow after the shock is supersonic; for intermediary values, 
Mo(O,) < M < M**(O,), the flow after the shock is subsonic, partially or totally. 

When the body is an infinite cone of revolution, the flow after the shock is 
conical and the shock wave is itself an infinite cone of revolution. Since we assume 
that only the nose of the body is a cone, the body meridian possesses a recti- 
linear segment 01, up to the point I ,  at which point the slope of the tangent, or 
one of the higher derivatives, is discontinuous; the presence of the discontinuity 
perturbs the conical flow. Two cases are to be distinguished. 

(1) When the speed on the cone is subsonic, that is, for Mo(O,) < M < M**(B,), 
the perturbation is propagated in all the region of subsonic flow and then in all 
the supersonic region if the latter exists. The conical flow is not produced in 
any region of space and the meridian of the shock wave does not possess a recti- 
linear segment. 

( 2 )  When the speed on the cone is supersonic, that is, for M**(O,) < M ,  the 
perturbation is propagated along a characteristic I A  which meets the shock wave 
meridian at a point A ;  this meridian possesses a rectilinear segment OA and a 
region of space in which conical flow exists. 
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In the work which follows, we consider only the first case. We locate the 
position of a point P in a semi-meridian plane by the polar co-ordinates OP = r 
and xOP = 8 (see figure 1). By means of these co-ordinates, the equation of the 
semi-cone in which the body terminates is written in the form (l), and the 
equation of the shock wave in the neighbourhood of the point 0 is written in 
the form ( 2 ) .  Thus 

(body) 8 = 8,, (1) 

(shock) 8 = B,+Arm+ .... ( 2 )  

The angle 8, is determined by the theory of axially symmetric flow (Kopal 
1947); it  depends on the Mach number M and the angle 8,. The purpose of the 
following tables is to determine the value of the exponent m; this exponent 
depends similarly on the Mach number M and the angle 8,. 

Shock 

FIGURE 1. Definition of polar co-ordinates. 

2. Equations of motion 
We designate by u and v the components, in the directions 8 and 8+&r, of 

the fluid velocity at a point P, by p and p the pressure and density of the fluid at 
this point, and by y the ratio of the specific heats of the fluid. The four functions 
u., v, p and p of the two variables r and 6 satisfy the following partial differential 
equations which express the fundamental law of dynamics, the conservation of 
mass and the conservation of energy: 

a a 
ar ae - (r2pusin8) +- (rpvsin8) = 0, 

(3) 
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We attempt to satisfy the preceding equations using functions expanded in 
series of increasing powers of r ;  the coefficients depend only on 8. Thus 

(4) i 
u(r, 0) = u0(8) + 2Armu,(8) + . . ., 
v(r,8) = u,(e)+2Armvm(O) + ..., 
p(r ,  8) = po(8) + 2Armpm(B) + . . ., 
p ( r ,  e) = p0(o) + 2 ~ ~ ~ , ( e )  + . . .. 

By substitution of the preceding expansions into equations (3) and by identi- 
fication according to successive powers of r,  one obtains an infinite set of differ- 
ential equations. The equations (3) permit a first integral deduced from the 
theorem of Bernoulli. Since the limiting speed qm is constant in front of the shock 
and continuous across the shock, one can take the following equation to be valid 
throughout the fluid 2Y 2 0 + ~ 2 + v 2  = 9;. 

Y - 1 P  
We now introduce the positive function a,(@ defined by 

(6) 

The differential equations deduced from equations (3) can be written in the 
following form. Using given initial conditions, the functions with index 0 can 
be calculated from equations (7) below, whereas the functions with index m can 
then be calculated, when m has been chosen, from equations (8); the prime 
indicates differentiation with respect to 8; 

a, 2 - - YPO - - - &(y-1)(&-ut-v;). 
Po 

u; - vo = 0: 

vo ’( I - -  ;) + u  o( 1-2- ;) - -cote=o,  2 
Po ” ; l i -$ )+~+co te  VO = 0, 

PA - =  y - =  PA 0; 
Po Po 

(7) 

Y Po 
u~vo+mumuo-vmvo+m-- = 0, 

3. Conditions on the body 

requiring that the differential equation of the stream surfaces 
The body is formed by the stream surface extending from the point 0. By 

dr rde 
- 

u v  ( 9) 
19-2 
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be satisfied by the function (l), one obtains the conditions 

Henri Cabannes and Claude Xtuel 

y- 1 q2ccosao,-q; 
2, (0 ) = __ -~ -.-___ 

y + l  psino, ' o w  

Po(%) = 27 Jf2sin2& Y- 
- P Y+l y +  1' 

2 1 Y-1 P +- -- -- 

4. Conditions on the shock wave 
A certain number of conditions must be satisfied across the shock wave. These 

conditions which express the law of conservation of mass and conservation of 
energy are stated by the following equations, in which C, $5 and j.5 denote the speed 
of sound, the pressure and density before shock, p the angle which the tangent 
to the shock wave meridian makes with the axis of revolution, and ddenotes  
the normal Mach number M sin /? : 

' 

p -  2 1 7-1 
p - T T i Z  y + l '  

+-- 
The Mach number M is expressed as a function of the speed ij by 

2u, + (m + 1) uo tan 0, + (m + 1) v,, = 0, \ 

2vm + -__- - 3) -4u0 +m* Wvo cot ow = 0, 

13m=-- cot 0,- (m + 1) __- 2Y uovo - 

y+1- Y + l  

Po Y+1 y + l  a; ' 
Y - l U o  cot ow + (m + 1) __ - . & - m(y+l)+y+2 

Po Y+l Y + l V O  I 

> 

(13) 
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5. Method of integration 
The system (8) has two first integrals, which can be written in the following 

form, where a denotes a constant, determined by the conditions on the shock 
wave, 

u;(B ) tane,, y + 3  cote, 
y(m+1) -q:-u;(e,) Y - 1  ~ + l  y + l  

- ---w ____--__ a 
with 

Thus the system (8) is reduced to a system of two linear non-homogeneous 

m a; 
Y vo do] ,I (16) 

differential equations, that is, 

uk - (m + 1 ) v, = - - a exp (IOeW 
(1 -:) VI, + A U ~  +BV, = - m uoaexp (s,”w ?do), 

Y 

The general solution is the sum of a particular solution of the complete system 
plus the general solution of the homogeneous system. For the homogeneous 
system, all the points of the interval 0, < 0 < 8, are ordinary points; the right- 
hand sides of (16) are infinite at the extremity 8 = 8, of the interval. 

In  the neighbourhood of the body, we can write the following series expansions 

urn(@ = o(e-e,)%m, 

vrn(e) = o(e-e,)+ 
For positive values of the exponent m, the functions un,, v,, pm and pm 

therefore have finite values on the body. Thus the presence of the singularity in 
the system (8) for 0 = 0, does not introduce any complication in the numerical 
integration. This singularity was studied by Shen & Lin (1951) for the case 
m = 1. Because they neglected the existence of one of the first integrals, they 
were led to an indicial equation of third degree which had a double root, and 
therefore they found a logarithmic term. In reality, the indicial equation is of 
second degree with two distinct roots. Lin has shown in a private communication 
that the coefficient of the logarithmic term is zero, which brings the results of 
Shen & Lin (1951) into accord with those of Cabannes (1951 b).  
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To begin the calculations for fixed y, the angle 8, of the body is assumed and 
the two first equations of ( 7 )  are integrated starting from 8 = 8,, taking 
u,(8,) = 0 and selecting an arbitrary value of u,(8,). The shock wave is reached 
when 

at this point we have 8 = Ow, and the Mach number M before the shock is given 

The functions p ,  and po are computed starting from the shock conditions by 
means of the relation (6) and the first integral popp' = const. The functions of 
index zero being known, the functions of index m are calculated, for an assumed 

u,o 

8. Qm 

10" 0.37 
0.38 
0-39 
0-40 

20" 0-33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 

0.31 
0.32 
0.33 
0.34 
0.35 
0-36 
0.37 
0.38 
0.39 
0.40 

30" 

8, 
80.056 
75-790 
71.640 
67.958 

72.869 
70.477 
68.096 
65-787 
63.584 
61.500 
59.539 
57.697 

69.419 
67.763 
66.146 
64.577 
63.088 
61.622 
60.241 
58-924 
57.670 
56.477 

M 

1.05398 
1-05639 
1-07239 
1-0948 1 

1.21221 
1.21171 
1-21866 
1.23144 
1.24873 
1.26954 
1.29315 
1-31906 

1.48062 
1-48228 
1.48959 
1.50171 
1.51792 
1.53768 
1.56053 
1.58613 
1.61418 
1.64449 

rn 

- 0,25869 
0.84264 
4.18764 

18.293 

-0.16049 
0.15595 
0-61447 
1.30671 
2.42736 
4.45732 
8.93831 

25.10423 

- 0.04791 
0.18019 
0.47582 
0.86948 
1.41366 
2.20664 
3.45348 
5.65570 

10.41496 
27.46310 

TABLE 1 

value of m, by integrating the system (8), starting from the relations (14) which 
are valid for 8 = 8,. The computation is completed when the value 6, is reached; 
the value v,(8,) thus obtained is in general different from zero. The computation 
is repeated with the same values of B,, u,(B,) and y, and a different value of m; 
successive approximations are used to obtain the value of m for which v,(e,) = 0. 
We thus define the exponent m as a function of the angle e,, the Mach number M ,  
and the adiabatic constant y. The computations have been carried out with the 
help of the I.B.M. 704 electronic computer. The numerical integrations were 
made by the fourth-order Runge-Kutta method; the step length for the integra- 
tion was chosen to be equal to one-twentieth of a degree. 
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6. Numerical results 
In the computations, the adiabatic constant was taken to  be y = 1.4. Three 

cones have been considered with 6, = lo", 20" and 30". The results are given in 
table 1, the angles 0, being expressed in degrees, and the results are also plotted 

tan g5 = A tan (0, - O,), 
Y--l  -- tan 0, - ~ tan (otU - 8,)) , 

2 
- sin (0, - 0,) COB (0, - 0,) 1 

1 -A2 

in figure 2. 

' (21) 

A 
? n -  

6 -  

4 -  

20° 30" 

M -  M,C@,, Y) 
FIGURE 2. Variatione of the exponent rn for axially symmetric flow. 

7. Comparison with the results for plane flow 
In the case of plane flow it is possible to calculate the exponent m by means of 

formulae in finite terms (Cabannes 1951a). In  the cross-sectional plane of the 
wedge the axis of symmetry of the wedge is taken as the polar axis and 0, is 
the angle between the shock and the polar axis. The equation of the shock in 
the neighbourhood of the vertex of the wedge can be written, in polar co- 

The exponent m is implicitly defhed as a function of the wedge angle 0,, the Mach 
number M and the adiabatic constant y by the formulae 

ordinates, in the form e = O,+AF+ .... (20) 

-r-1 cot (e, - 0,) - - (tan 0, - cot ow), 7 + Y + l  
4 sin (8, - 0,) cos (0, - 0,) 4 

Atanm4 = 
3 

Thirty-five cases have been computed with y = 1.4. The results are presented 
in table 2. 



296 Henri Cabannes and Claude Xtuel 

This work was made possible by a research grant, made available to us by 
the 'Centre Europben de Calcul Scientifique', to whom we wish to express our 
appreciation. 

20" 

30" 

40" 

0, evJ 

loo 67" 26' 
67" 
66" 
65" 
65" 
63" 
62" 52' 

64" 54' 
64" 30' 
64" 
63" 30' 
63" 
62" 30' 
62" 
61" 30' 
61" 19' 

64" 48' 
64" 40' 
64" 30' 
64" 20' 
64' 10' 
64" 
63" 50' 
63' 40' 
63" 30' 
63" 20' 
63" 10' 
63" 
62" 50' 
62' 43' 

66" 
65" 55' 
65" 50' 
65" 45' 
65" 41' 

M 
1.4210 
1.4211 
1.4226 
1-4255 
1.4297 
1.4354 
1-4363 

1-8400 
1.8402 
1.8411 
1.8426 
1.8447 
1.8474 
1.8507 
1.8549 
1.8591 

2.5192 
2.5193 
2.5195 
2.5198 
2.5203 
2.5210 
2.5218 
2-5228 
2.5239 
2.5252 
2.5266 
2.5282 
2.5299 
2.5312 

4.4473 
4.4481 
4-4492 
4.4504 
4.4514 

TABLE 2 

m 
o*oooo 
0.1349 
0.5536 
1.2697 
2.8570 

14.7041 

0~0000 
0-1915 
0.5080 
0.9472 
1.5999 
2.6812 
4.8916 

13.6217 

0~0000 
0-1357 
0.3362 
0-5757 
0.8661 
1.2255 
1.6819 
2.2792 
3.0979 
4-2893 
5-3123 
9.8407 

20.6164 

0~0000 
0.5369 
1.0597 
2.2032 

03 

a3 

a3 

a3 

REFERENCES 

CABANNES, H. 19510 DBtermhation de l'onde de choc attaah6e lorsque la vitesse aval 

CABANNES, H. 1951 b Etude de l'onde de choc attechbe dam les Bcoulements de r6volu- 

CABANNES, H. 1952 Etude de l'onde de choc attach6e d w  les Bcoulements de r6volution. 

KOPAL, Z. 1947 Tables of Supersonic Plow Around Cones. Maasachmetts Institute of 

SFIEN, S. F. & Lm, C. C. 1951 On the attached curved shock in front of a sharp-nosed 

ti la pointe est subsonique. Publ. Scient. et Tech. du Minhtkre de Z'Air, 250, 181-95. 

tion. I. Css d'un obstacle termin6 par w e  ogive. Rech. adro. 24, 17-23. 

II. Cae d'un obstacle termin6 par un c6ne. Rech. a h .  27, 7-16. 

Technology. 

symmetrical body placed in a uniform stream. N.A.C.A. Tech. Note 2505. 


